Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles
نویسندگان
چکیده
Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1.
منابع مشابه
Identification and characterization of mitochondrial Mia40 as an iron-sulfur protein.
Mia40 is a highly conserved mitochondrial protein that plays an essential role in the import and oxidative folding of many proteins of the mitochondrial intermembrane space. Mia40 uses its redox active CPC motif to shuttle disulfides between its client proteins (newly imported proteins) and the thiol oxidase Erv1. As a thiol oxidoreductase, no cofactor was found in Mia40, nor is a cofactor requ...
متن کاملRole of tryptophan residues of Erv1: Trp95 and Trp183 are important for its folding and oxidase function
Erv1 is an FAD-dependent thiol oxidase of the ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) sub-family and an essential component of the mitochondrial import and assembly pathway. Erv1 contains six tryptophan residues, which are all located in the highly conserved C-terminal FAD-binding domain. Though important structural roles were predicted for the invari...
متن کاملEnzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae
BACKGROUND Oxidized glutathione (GSSG) is the preferred form for industrial mass production of glutathione due to its high stability compared with reduced glutathione (GSH). In our previous study, over-expression of the mitochondrial thiol oxidase ERV1 gene was the most effective for high GSSG production in Saccharomyces cerevisiae cells among three types of different thiol oxidase genes. RES...
متن کاملThe N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria.
Erv1 and Mia40 constitute the two important components of the disulfide relay system that mediates oxidative protein folding in the mitochondrial intermembrane space. Mia40 is the import receptor that recognizes the substrates introducing disulfide bonds while it is reduced. A key function of Erv1 is to recycle Mia40 to its active oxidative state. Our aims here were to dissect the domain of Erv...
متن کاملCorrection for Precursor Oxidation by Mia40 and Erv1 Promotes Vectorial Transport of Proteins into the Mitochondrial Intermembrane Space
The mitochondrial intermembrane space contains chaperone complexes that guide hydrophobic precursor proteins through this aqueous compartment. The chaperones consist of hetero-oligomeric complexes of small Tim proteins with conserved cysteine residues. The precursors of small Tim proteins are synthesized in the cytosol. Import of the precursors requires the essential intermembrane space protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 460 شماره
صفحات -
تاریخ انتشار 2014